Send to

Choose Destination
Pain. 2003 Jan;101(1-2):199-208.

Up-regulation and trafficking of delta opioid receptor in a model of chronic inflammation: implications for pain control.

Author information

Canada Department of Neurology and Neurosurgery, Montreal Neurological Institute, 3801 University Street, Montreal, Quebec, Canada H3A 2B4.


Pharmacological and physiological evidence supports a role for delta (delta) opioid receptors in the nociceptive mechanisms of inflammation. However, few data exist regarding delta opioid receptor expression and localization in such conditions. In this study, we have assessed the distribution and function of delta opioid receptors in the rat spinal cord following induction of chronic inflammation by intraplantar injection of complete Freund's adjuvant (CFA). Intrathecal administration of the selective delta opioid receptor agonist, D-[Ala(2), Glu(4)] deltorphin, dose-dependently reversed thermal hyperalgesia induced by CFA. In situ hybridization and Western blotting experiments revealed an increase in delta opioid receptor mRNA and protein levels, respectively, in the dorsal lumbar spinal cord ipsilateral to the CFA injection site compared to the contralateral side and sham-injected controls. By electron microscopy, immunopositive delta opioid receptors were evident in neuronal perikarya, dendrites, unmyelinated axons and axon terminals. Quantification of immunopositive signal in dendrites revealed a twofold increase in the number of immunogold particles in the ipsilateral dorsal spinal cord of CFA-injected rats compared to the contralateral side and to sham-injected rats. Moreover, the relative frequency of immunogold particles associated with or in close proximity to the plasma membrane was increased in the ipsilateral dorsal spinal cord, indicating a more efficient targeting of delta opioid receptors to neuronal plasma membranes. These data demonstrate that CFA induces an up-regulation and increased membrane targeting of delta opioid receptors in the dorsal spinal cord which may account for the enhanced antinociceptive effects of delta opioid receptor agonists in chronic inflammatory pain models.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wolters Kluwer Icon for eScholarship, California Digital Library, University of California
Loading ...
Support Center