Send to

Choose Destination
See comment in PubMed Commons below
Cardiovasc Res. 2003 Jan;57(1):20-7.

Sarcoplasmic reticulum Ca2+-ATPase modulates cardiac contraction and relaxation.

Author information

Clinic III of Internal Medicine, Laboratory of Muscle Research and Molecular Cardiology, University of Cologne, Cologne, Germany.


The cardiac SR Ca(2+)-ATPase (SERCA2a) regulates intracellular Ca(2+)-handling and thus, plays a crucial role in initiating cardiac contraction and relaxation. SERCA2a may be modulated through its accessory phosphoprotein phospholamban or by direct phosphorylation through Ca(2+)/calmodulin dependent protein kinase II (CaMK II). As an inhibitory component phospholamban, in its dephosphorylated form, inhibits the Ca(2+)-dependent SERCA2a function, while protein kinase A dependent phosphorylation of the phospho-residues serine-16 or Ca(2+)/calmodulin-dependent phosphorylation of threonine-17 relieves this inhibition. Recent evidence suggests that direct phosphorylation at residue serine-38 in SERCA2a activates enzyme function and enhances Ca(2+)-reuptake into the sarcoplasmic reticulum (SR). These effects that are mediated through phosphorylation result in an overall increased SR Ca(2+)-load and enhanced contractility. In human heart failure patients, as well as animal models with induced heart failure, these modulations are altered and may result in an attenuated SR Ca(2+)-storage and modulated contractility. It is also believed that abnormalities in Ca(2+)-cycling are responsible for blunting the frequency potentiation of contractile force in the failing human heart. Advanced gene expression and modulatory approaches have focused on enhancing SERCA2a function via overexpressing SERCA2a under physiological and pathophysiological conditions to restore cardiac function, cardiac energetics and survival rate.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center