Format

Send to

Choose Destination
Biol Cell. 2002 Oct;94(6):327-34.

F3/contactin, a neuronal cell adhesion molecule implicated in axogenesis and myelination.

Author information

1
Neurogenèse et Morphogenèse dans Développement et chez l'Adulte, UMR 6156, IBDM, Marseille, France.

Abstract

A general feature of the cell adhesion molecules belonging to the immunoglobulin family (Ig-CAMs) is to display a modular structure that provides a framework for multiple binding sites for other recognition molecules. Among this family, F3/contactin is a glycan phosphatidyl-inositol (GPI)-anchored molecule expressed by neurons that displays the distinctiveness to exert heterophilic but no homophilic binding activities. The Ig domains of F3/contactin were shown to interact with the L1 family of Ig-CAMs, including L1, NrCAM, and neurofascin. Binding between F3/contactin and NrCAM is known to modulate axonal elongation of the cerebellar granule cells and to control sensory axon guidance. F3/contactin mediates neuron-glial contacts through its association with extracellular matrix components (tenascin-R, tenascin-C) and RPTPbeta/phosphacan, influencing axonal growth and fasciculation. Another major role of F3/contactin is to organize axonal subdomains at the node of Ranvier of myelinated fibers in interplay with other Ig-CAMs, through its binding with caspr/paranodin at paranodes and the voltage-gated sodium channels in the nodal region. The F3/contactin deficient mice display a severe ataxia correlated with defects in axonal and dendritic projections in the cerebellum. These mice also display defects in nerve influx conduction due to the disruption of the axo-glial contacts at paranodes. Finally, the recent identification of a Drosophila homologue of F3/contactin indicated that this family of GPI-anchored CAMs plays a conserved function in axonal insulation.

PMID:
12500940
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center