Send to

Choose Destination
Curr Biol. 2002 Dec 23;12(24):2142-6.

The cell cycle regulatory factor TAF1 stimulates ribosomal DNA transcription by binding to the activator UBF.

Author information

Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA.


Control of ribosome biogenesis is a potential mechanism for the regulation of cell size during growth, and a key step in regulating ribosome production is ribosomal RNA synthesis by RNA polymerase I (Pol I). In humans, Pol I transcription requires the upstream binding factor UBF and the selectivity factor SL1 to assemble coordinately on the promoter. UBF is an HMG box-containing factor that binds to the rDNA promoter and activates Pol I transcription through its acidic carboxy-terminal tail. Using UBF (284-670) as bait in a yeast two-hybrid screen, we have identified an interaction between UBF and TAF1, a factor involved in the transcription of cell cycle and growth regulatory genes. Coimmunoprecipitation and protein-protein interaction assays confirmed that TAF1 binds to UBF. Confocal microscopy showed that TAF1 colocalizes with UBF in Hela cells, and cell fractionation experiments provided further evidence that a portion of TAF1 is localized in the nucleolus, the organelle devoted to ribosomal DNA transcription. Cotransfection and in vitro transcription assays showed that TAF1 stimulates Pol I transcription in a dosage-dependent manner. Thus, TAF1 may be involved in the coordinate expression of Pol I- and Pol II-transcribed genes required for protein biosynthesis and cell cycle progression.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center