Format

Send to

Choose Destination
See comment in PubMed Commons below
Oncologist. 2002;7(6):492-508.

Impact of tumor hypoxia and anemia on radiation therapy outcomes.

Author information

1
Department of Radiation Oncology, Continuum Cancer Centers of New York, Beth Israel Medical Center, 10 Union Square East, New York, NY 10003, USA. lharrison@bethisraelny.org

Abstract

Local recurrence remains a major obstacle to achieving cure of many locally advanced solid tumors treated with definitive radiation therapy. The microenvironment of solid tumors is hypoxic compared with normal tissue, and this hypoxia is associated with decreased radiosensitivity. Recent preclinical data also suggest that intratumoral hypoxia, particularly in conjunction with an acid microenvironment, may be directly or indirectly mutagenic. Investigations of the prognostic significance of the pretreatment oxygenation status of tumors in patients with head and neck or cervical cancer have demonstrated that increased hypoxia, typically designated in these studies as pO(2) levels below 2.5-10 mm Hg, is associated with decreased local tumor control and lower rates of disease-free and overall survival. Hypoxia-directed therapies in the radiation oncology setting include treatment using hyperbaric oxygen, fluosol infusion, carbogen breathing, and electron-affinic and hypoxic-cell sensitizers. These interventions have shown the potential to increase the effectiveness of curative-intent radiation therapy, demonstrating that the strategy of overcoming hypoxia may be a viable and important approach. Anemia is common in the cancer population and is suspected to contribute to intratumoral hypoxia. A review of the literature reveals that a low hemoglobin level before or during radiation therapy is an important risk factor for poor locoregional disease control and survival, implying that a strong correlation could exist between anemia and hypoxia (ultimately predicting for a poor outcome). While having a low hemoglobin level has been shown to be detrimental, it is unclear as to exactly what the threshold for "low" should be (studies in this area have used thresholds ranging from 9-14.5 g/dl). Optimal hemoglobin and pO(2) thresholds for improving outcomes may vary across and within tumor types, and this is an area that clearly requires further evaluation. Nonetheless, the correction of anemia may be a worthwhile strategy for radiation oncologists to improve local control and survival.

PMID:
12490737
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center