Format

Send to

Choose Destination
J Dairy Sci. 2002 Nov;85(11):2803-12.

Fertilization and early embryonic development in heifers and lactating cows in summer and lactating and dry cows in winter.

Author information

1
Department of Dairy Science, University of Wisconsin, Madison 53706, USA.

Abstract

Two experiments in two seasons evaluated fertilization rate and embryonic development in dairy cattle. Experiment 1 (summer) compared lactating Holstein cows (n = 27; 97.3 +/- 4.1 d postpartum [dppl; 40.0 +/- 1.5 kg milk/d) to nulliparous heifers (n = 28; 11 to 17 mo old). Experiment 2 (winter) compared lactating cows (n = 27; 46.4 +/- 1.6 dpp; 45.9 +/- 1.4 kg milk/d) to dry cows (n = 26). Inseminations based on estrus included combined semen from four high-fertility bulls. Embryos and oocytes recovered 5 d after ovulation were evaluated for fertilization, embryo quality (1 = excellent to 5 = degenerate), nuclei/embryo, and accessory sperm. In experiment 1, 21 embryos and 17 unfertilized oocytes (UFO) were recovered from lactating cows versus 32 embryos and no UFO from heifers (55% vs. 100% fertilization). Embryos from lactating cows had inferior quality scores (3.8 +/- 0.4 vs. 2.2 +/- 0.3), fewer nuclei/embryo (19.3 +/- 3.7 vs. 36.8 +/- 3.0) but more accessory sperm (37.3 +/- 5.8 vs. 22.4 +/- 5.5/embryo) than embryos from heifers. Sperm were attached to 80% of UFO (17.8 +/- 12.1 sperm/UFO). In experiment 2, lactating cows yielded 36 embryos and 5 UFO versus 34 embryos and 4 UFO from dry cows (87.8 vs. 89.5% fertilization). Embryo quality from lactating cows was inferior to dry cows (3.1 +/- 0.3 vs. 2.2 +/- 0.3), but embryos had similar numbers of nuclei (27.2 +/- 2.7 vs. 30.6 +/- 2.1) and accessory sperm (42.0 +/- 9.4 vs. 36.5 +/- 6.3). From 53% of the flushings from lactating cows and 28% from dry cows, only nonviable embryos were collected. Thus, embryos of lactating dairy cows were detectably inferior to embryos from nonlactating females as early as 5 d after ovulation, with a surprisingly high percentage of nonviable embryos. In addition, fertilization rate was reduced only in summer, apparently due to an effect of heat stress on the oocyte.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center