Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochemistry. 2002 Dec 24;41(51):15334-41.

RNA polymerase alters the mobility of an A-residue crucial to polymerase-induced melting of promoter DNA.

Author information

1
Department of Biochemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA.

Abstract

Strand separation in promoter DNA induced by Escherichia coli RNA polymerase is likely initiated at a conserved A residue at position -11 of the nontemplate strand. Here we describe the use of fluorescence techniques to study the interaction of RNA polymerase with the -11 base. Forked DNA templates were employed, containing the fluorescent base, 2-aminopurine (2AP), substituted at the -11 position in a single-stranded tail comprising the nucleotides on the nontemplate strand at which base pairing is disrupted in an RNA polymerase-promoter complex. We demonstrate that the presence of 2AP instead of an A at position -11 has no major effect on the accessibility of DNA to DNase I or KMnO(4) in the presence or absence of RNA polymerase, thus justifying the use of templates containing the 2AP substitution in the fluorescence studies. A blue shift of the 2AP fluorescence emission maximum is observed in the presence of RNA polymerase. The results of fluorescence anisotropy decay studies indicate that about 60% of the 2AP residues at -11 are immobilized in an RNA polymerase complex. This value is in good agreement with the fraction of 2AP-substituted templates determined to be in a stable, heparin-resistant complex with RNA polymerase. These results are consistent with the residue at -11 being tightly bound in a hydrophobic pocket of the enzyme.

PMID:
12484772
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center