Send to

Choose Destination
Biochemistry. 2002 Dec 17;41(50):15017-24.

Molecular crowding regulates the structural switch of the DNA G-quadruplex.

Author information

Department of Chemistry, Faculty of Science and Engineering, and High Technology Research Center, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe 658-8501, Japan.


Almost all biochemical reactions in vitro have been investigated through numerous experiments conducted in dilute solutions containing low concentrations of solutes. However, biomacromolecules such as nucleic acids, proteins, and polysaccharides are designed to function and/or form their native structures in a living cell containing high concentrations of biomacromolecules, substrates, cofactors, salts, and so on. In the present study, we have demonstrated quantitatively the effect of molecular crowding on structures and stabilities of the G-quadruplex of d(G(4)T(4)G(4)). Molecular crowding with poly(ethylene glycol) (PEG) induced a structural transition from the antiparallel to the parallel G-quadruplex of d(G(4)T(4)G(4)), while molecular crowding with polycations did not alter the structure of the antiparallel G-quadruplex. The binding constants of putrescine, one of the polycations, for d(G(4)T(4)G(4)) in the absence and presence of Na(+) are calculated to be 277 and 2.5 M(-)(1), respectively. This indicates that the polycations coordinate to d(G(4)T(4)G(4)) with electrostatic interactions. The thermodynamic parameters of the antiparallel G-quadruplex formation under the crowding and noncrowding conditions induced by putrescine were also estimated. The stability of the antiparallel G-quadruplex decreased (-DeltaG degrees (25) decreased from 28 to 22 kcal mol(-)(1)) with molecular crowding by putrescine. Also, enthalpy and entropy changes in the structural formation under crowding and noncrowding conditions clearly showed that destabilization was entropy-driven. These quantitative parameters indicated that both the volume excluded by PEG and chemical interactions such as electrostatic interaction with solute polycations are critical for determining how molecular crowding affects the structure and stability of highly ordered DNA structures.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center