Format

Send to

Choose Destination
See comment in PubMed Commons below
J Mol Biol. 2003 Jan 3;325(1):163-74.

De novo backbone and sequence design of an idealized alpha/beta-barrel protein: evidence of stable tertiary structure.

Author information

1
Laboratoire de Biologie Moléculaire et Génie Génétique, Université de Liège, B6, Sart Tilman, Belgium.

Abstract

We have designed, synthesized, and characterized a 216 amino acid residue sequence encoding a putative idealized alpha/beta-barrel protein. The design was elaborated in two steps. First, the idealized backbone was defined with geometric parameters representing our target fold: a central eight parallel-stranded beta-sheet surrounded by eight parallel alpha-helices, connected together with short structural turns on both sides of the barrel. An automated sequence selection algorithm, based on the dead-end elimination theorem, was used to find the optimal amino acid sequence fitting the target structure. A synthetic gene coding for the designed sequence was constructed and the recombinant artificial protein was expressed in bacteria, purified and characterized. Far-UV CD spectra with prominent bands at 222nm and 208nm revealed the presence of alpha-helix secondary structures (50%) in fairly good agreement with the model. A pronounced absorption band in the near-UV CD region, arising from immobilized aromatic side-chains, showed that the artificial protein is folded in solution. Chemical unfolding monitored by tryptophan fluorescence revealed a conformational stability (DeltaG(H2O)) of 35kJ/mol. Thermal unfolding monitored by near-UV CD revealed a cooperative transition with an apparent T(m) of 65 degrees C. Moreover, the artificial protein did not exhibit any affinity for the hydrophobic fluorescent probe 1-anilinonaphthalene-8-sulfonic acid (ANS), providing additional evidence that the artificial barrel is not in the molten globule state, contrary to previously designed artificial alpha/beta-barrels. Finally, 1H NMR spectra of the folded and unfolded proteins provided evidence for specific interactions in the folded protein. Taken together, the results indicate that the de novo designed alpha/beta-barrel protein adopts a stable three-dimensional structure in solution. These encouraging results show that de novo design of an idealized protein structure of more than 200 amino acid residues is now possible, from construction of a particular backbone conformation to determination of an amino acid sequence with an automated sequence selection algorithm.

PMID:
12473459
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for ORBi (University of Liege)
    Loading ...
    Support Center