Send to

Choose Destination
Nat Neurosci. 2003 Jan;6(1):43-50.

Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation.

Author information

Istituto CNR di Neuroscienze and Dipartimento di Scienze Biomediche Sperimentali, Università di Padova, viale G. Colombo 3, 35121 Padova, Italy.


The cellular mechanisms underlying functional hyperemia--the coupling of neuronal activation to cerebral blood vessel responses--are not yet known. Here we show in rat cortical slices that the dilation of arterioles triggered by neuronal activity is dependent on glutamate-mediated [Ca(2+)](i) oscillations in astrocytes. Inhibition of these Ca(2+) responses resulted in the impairment of activity-dependent vasodilation, whereas selective activation--by patch pipette--of single astrocytes that were in contact with arterioles triggered vessel relaxation. We also found that a cyclooxygenase product is centrally involved in this astrocyte-mediated control of arterioles. In vivo blockade of glutamate-mediated [Ca(2+)](i) elevations in astrocytes reduced the blood flow increase in the somatosensory cortex during contralateral forepaw stimulation. Taken together, our findings show that neuron-to-astrocyte signaling is a key mechanism in functional hyperemia.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center