Send to

Choose Destination
See comment in PubMed Commons below
Int J Biochem Cell Biol. 2003 Jan;35(1):32-8.

Sense oligonucleotide competition for gene promoter binding and activation.

Author information

Department of Biochemistry, College of Medicine, University of Vermont, Burlington, VT 05405-0068, USA.


Considerable evidence has ensued on the importance of growth factors during regeneration both for cell replication and for stimulation of reparative cells to synthesize and secrete extracellular matrix components. During the healing process if the growth factor concentration is too high because of over-expression, abnormal wound healing and tissue fibrosis will occur. The growth factor concentration at the wound site may be controlled by gene therapy and the titration of gene dosage. However, if there is a narrow window between the beneficial effects and adverse effects of gene therapy, oligonucleotide approaches may be used concurrently with gene therapy to control growth factor concentration(s) at the wound site. Antisense oligos offer a method to control the concentration of growth factors at the level of translation. A novel method using sense oligos to the proalpha1 (I) collagen gene to inhibit gene transcription and collagen synthesis has recently been reported. The exogenous modified oligodeoxynucleotide competes with the cis-element (i.e. the transforming growth factor-beta (TGF-beta) element) in the distal 5'-flanking region of the proalpha1 (I) collagen gene for the trans-acting factor (i.e. the TGF-beta activator protein complex), thereby down regulating promoter activity of the proalpha1 (I) collagen gene and inhibiting type I collagen synthesis. The oligonucleotide approaches, both antisense and sense therapies, may be used to regulate over-expression of growth factors and thereby either eliminate or lessen the potential adverse effects of gene therapy.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center