Format

Send to

Choose Destination
Mol Cell. 2002 Nov;10(5):1189-99.

Transient stability of DNA ends allows nonhomologous end joining to precede homologous recombination.

Author information

1
Laboratoire du Cycle Cellulaire, Service de Biochimie et de Génétique Moléculaire, CEA/Saclay, 91191 Gif sur Yvette Cedex, France.

Abstract

The stability of DNA ends generated by the HO endonuclease in yeast is surprisingly high with a half-life of more than an hour. This transient stability is unaffected by mutations that abolish nonhomologous end joining (NHEJ). The unprocessed ends interact with Yku70p and Yku80p, two proteins required for NHEJ, but not significantly with Rad52p, a protein involved in homologous recombination (HR). Repair of a double-strand break by NHEJ is unaffected by the possibility of HR, although the use of HR is increased in NHEJ-defective cells. Partial in vitro 5' strand processing suppresses NHEJ but not HR. These results show that NHEJ precedes HR temporally, and that the availability of substrate dictates the particular pathway used. We propose that transient stability of DNA ends is a foundation for the permanent stability of telomeres.

PMID:
12453425
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center