Format

Send to

Choose Destination
Nat Genet. 2003 Jan;33(1):80-4. Epub 2002 Nov 25.

The mismatch repair system is required for S-phase checkpoint activation.

Author information

1
Department of Biochemistry and Molecular Biology and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA.

Abstract

Defective S-phase checkpoint activation results in an inability to downregulate DNA replication following genotoxic insult such as exposure to ionizing radiation. This 'radioresistant DNA synthesis' (RDS) is a phenotypic hallmark of ataxia-telangiectasia, a cancer-prone disorder caused by mutations in ATM. The mismatch repair system principally corrects nucleotide mismatches that arise during replication. Here we show that the mismatch repair system is required for activation of the S-phase checkpoint in response to ionizing radiation. Cells deficient in mismatch repair proteins showed RDS, and restoration of mismatch repair function restored normal S-phase checkpoint function. Catalytic activation of ATM and ATM-mediated phosphorylation of the protein NBS1 (also called nibrin) occurred independently of mismatch repair. However, ATM-dependent phosphorylation and activation of the checkpoint kinase CHK2 and subsequent degradation of its downstream target, CDC25A, was abrogated in cells lacking mismatch repair. In vitro and in vivo approaches both show that MSH2 binds to CHK2 and that MLH1 associates with ATM. These findings indicate that the mismatch repair complex formed at the sites of DNA damage facilitates the phosphorylation of CHK2 by ATM, and that defects in this mechanism form the molecular basis for the RDS observed in cells deficient in mismatch repair.

PMID:
12447371
DOI:
10.1038/ng1052
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center