Format

Send to

Choose Destination
See comment in PubMed Commons below

Water balance in desert Drosophila: lessons from non-charismatic microfauna.

Author information

1
Department of Ecology and Evolutionary Biology and Center for Insect Science, 1041 E Lowell Street, University of Arizona, Tucson, AZ 85721, USA. agibbs@arl.arizona.edu

Abstract

Water stress is a particularly important problem for insects and other small organisms in arid environments. Cactophilic fruit flies in the genus Drosophila have invaded deserts on numerous occasions, including multiple independent invasions of North American deserts. Because the evolutionary history of this genus is so well studied, we can investigate the mechanisms of adaptation in a rigorous phylogenetic context. As expected, desert fruit flies lose water less rapidly than their mesic congeners. They are also able to tolerate the loss of a greater percentage of body water, but this difference is mainly due to phylogenetic history, and does not represent an adaptation specifically to desert habitats. A laboratory analogue of desert Drosophila is provided by populations of D. melanogaster that have been subjected to selection for desiccation resistance. Selected populations resemble desert species in that they lose water slowly, relative to control populations, and are not more tolerant of dehydration stress. They differ, however, in having much higher water contents and different behavioral responses to desiccating conditions. Our comparisons of laboratory and natural populations reveal that not all possible adaptive mechanisms evolve in stressful environments. Different physiological and behavioral strategies may evolve depending upon the particular options available in the environment.

PMID:
12443934
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center