Format

Send to

Choose Destination
FEBS Lett. 2002 Nov 20;531(3):453-8.

Heterologous expression of dihydroflavonol 4-reductases from various plants.

Author information

1
Center of Life and Food Science Weihenstephan, Department of Plant Science, Chair of Floriculture Crops and Horticultural Plant Breeding, Am Hochanger 4, 85350, Freising, Germany. martens@lzw.agrar.tu-muenchen.de

Abstract

Dihydroflavonol 4-reductases (DFR) catalyze the stereospecific reduction of dihydroflavonols to the respective flavan 3,4-diols (leucoanthocyanidins) and might also be involved in the reduction of flavanones to flavan-4-ols, which are important intermediates in the 3-deoxyflavonoid pathway. Several cDNA clones encoding DFR have been isolated from different plant species. Despite the important function of these enzymes in the flavonoid pathway, attempts at heterologous expression of cDNA clones in Escherichia coli have failed so far. Here, three well known heterologous expression systems for plant-derived genes were tested to obtain the functional protein of DFR from Gerbera hybrids. Successful synthesis of an active DFR enzyme was achieved in eukaryotic cells, using either baker's yeast (Saccharomyces cerevisiae) or tobacco protoplasts (Nicotiana tabacum), transformed with expression vectors containing the open reading frame of Gerbera DFR. These expression systems provide useful and powerful tools for rapid biochemical characterization, in particular the substrate specificity, of the increasing number of cloned DFR sequences. Furthermore, this tool allows the stereospecific synthesis of (14)C-labeled leucoanthocyanidins in high quality and quantity, which is a prerequisite for detailed biochemical investigation of the less understood enzymatic reactions located downstream of DFR in anthocyanin, catechin and proanthocyanidin biosynthesis.

PMID:
12435592
DOI:
10.1016/s0014-5793(02)03583-4
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center