Send to

Choose Destination
Dev Cell. 2002 Nov;3(5):723-33.

Eliminating zebrafish pbx proteins reveals a hindbrain ground state.

Author information

Howard Hughes Medical Institute, Division of Basic Science, Fred Hutchinson Cancer Research Center, P.O. Box 19024, 1100 Fairview Avenue North, Seattle, WA 98109, USA.


The vertebrate hindbrain is divided into serially homologous segments, the rhombomeres (r). Pbx and Hox proteins are hypothesized to form heterodimeric, DNA binding transcription complexes which specify rhombomere identities. Here, we show that eliminating zebrafish Lzr/Pbx4 and Pbx2 function prevents hindbrain segmentation and causes a wholesale anterior homeotic transformation of r2-r6, to r1 identity. We demonstrate that Pbx proteins interact with Hox paralog group 1 proteins to specify segment identities broadly within the hindbrain, and that this process involves the Pbx:Hox-1-dependent induction of Fgf signals in r4. We propose that in the absence of Pbx function, r2-r6 acquire a homogeneous ground state identity, that of r1, and that Pbx proteins, functioning primarily with their Hox partners, function to modify this ground state identity during normal hindbrain development.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center