Send to

Choose Destination
Biochimie. 2002 May-Jun;84(5-6):559-67.

LasX, a transcriptional regulator of the lactocin S biosynthetic genes in Lactobacillus sakei L45, acts both as an activator and a repressor.

Author information

Laboratory of Microbial Gene Technology, P O Box 5051, Agricultural University of Norway, N-1432 As, Norway.


The 11 kb las locus, present on the 50 kb plasmid pCIM1, specifies the production of the lantibiotic lactocin S in Lactobacillus sakei L45. The gene cluster is organized into two oppositely orientated operons, lasAMNTUVPJW (lasA-W) and lasXY, the former of which contains the biosynthetic, immunity and transport genes. We have previously shown that inactivation of lasX abolishes lactocin S production and causes a drastic reduction in lasA-specific transcripts (encoding pre-lactocin S). The aim of this study was to determine whether or not the product of lasX, which is significantly similar to Rgg-like regulators, was directly involved in transcriptional regulation of the lactocin S biosynthetic genes. The divergently orientated and overlapping promoters, P(lasA)(-W) and P(lasXY), were transcriptionally fused to the Escherichia coli gusA gene, and the activity of the fusions was assayed in the presence and absence of lasX, which was expressed on a separate plasmid. A significant stimulation of expression (5-6-fold) of the P(lasA-W)-gusA fusion was observed in the presence of lasX, whereas expression of the P(lasXY)-gusA construct was reduced 1.5-2-fold. Our results strongly suggest that LasX is a bifunctional regulatory protein, acting both as an activator of lasA-W transcription and as a repressor of lasXY transcription. While a transcription stimulation activity has been described for several of the Rgg-like proteins, the present study is the first to report an autorepressor function for a member of this protein group.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center