Format

Send to

Choose Destination
Eur J Biochem. 2002 Nov;269(22):5712-21.

Purification and catalytic properties of a CO-oxidizing:H2-evolving enzyme complex from Carboxydothermus hydrogenoformans.

Author information

1
Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Strasse, Marburg, Germany.

Abstract

From the membrane fraction of the Gram-positive bacterium Carboxydothermus hydrogenoformans, an enzyme complex catalyzing the conversion of CO to CO2 and H2 was purified. The enzyme complex showed maximal CO-oxidizing:H2-evolving enzyme activity with 5% CO in the headspace (450 U per mg protein). Higher CO concentrations inhibited the hydrogenase present in the enzyme complex. For maximal activity, the enzyme complex had to be activated by either CO or strong reductants. The enzyme complex also catalyzed the CO- or H2-dependent reduction of methylviologen at 5900 and 180 U per mg protein, respectively. The complex was found to be composed of six hydrophilic and two hydrophobic polypeptides. The amino-terminal sequences of the six hydrophilic subunits were determined allowing the identification of the encoding genes in the preliminary genome sequence of C. hydrogenoformans. From the sequence analysis it was deduced that the enzyme complex is formed by a Ni-containing carbon monoxide dehydrogenase (CooS), an electron transfer protein containing four [4Fe-4S] clusters (CooF) and a membrane bound [NiFe] hydrogenase composed of four hydrophilic subunits and two membrane integral subunits. The hydrogenase part of the complex shows high sequence similarity to members of a small group of [NiFe] hydrogenases with sequence similarity to energy conserving NADH:quinone oxidoreductases. The data support a model in which the enzyme complex is composed of two catalytic sites, a CO-oxidizing site and a H2-forming site, which are connected via a different iron-sulfur cluster containing electron transfer subunits. The exergonic redox reaction catalyzed by the enzyme complex in vivo has to be coupled to energy conservation, most likely via the generation of a proton motive force.

PMID:
12423371
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center