Format

Send to

Choose Destination
See comment in PubMed Commons below
J Neurochem. 2002 Nov;83(4):837-45.

Increased methamphetamine-induced locomotor activity and behavioral sensitization in histamine-deficient mice.

Author information

1
Department of Psychiatry, Tohoku University, Graduate School of Medicine, Sendai, Japan. kkubotaya@mail.cc.tohoku.ac.jp

Abstract

We have recently suggested that the brain histamine has an inhibitory role on the behavioral effects of methamphetamine by pharmacological studies. In this study, we used the histidine decarboxylase gene knockout mice and measured the spontaneous locomotor activity, the changes of locomotion by single and repeated administrations of methamphetamine, and the contents of brain monoamines and amino acids at 1 h after a single administration of methamphetamine. In the histidine decarboxylase gene knockout mice, spontaneous locomotor activity during the dark period was significantly lower than in the wild-type mice. Interestingly, methamphetamine-induced locomotor hyperactivity and behavioral sensitization were facilitated more in the histidine decarboxylase gene knockout mice. In the neurochemical study, noradrenaline and O-phosphoserine were decreased in the midbrain of the saline-treated histidine decarboxylase gene knockout mice. On the other hand, single administration of methamphetamine decreased GABA content of the midbrain of the wild-type mice, but did not alter that of histidine decarboxylase gene knockout mice. These results suggest that the histamine neuron system plays a role as an awakening amine in concert with the noradrenaline neuron system, whereas it has an inhibitory role on the behavioral effects of methamphetamine through the interaction with the GABAergic neuron system.

PMID:
12421355
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center