Format

Send to

Choose Destination
See comment in PubMed Commons below
Oncogene. 2002 Nov 7;21(51):7883-90.

Farnesyltransferase inhibitor (L-744,832) restores TGF-beta type II receptor expression and enhances radiation sensitivity in K-ras mutant pancreatic cancer cell line MIA PaCa-2.

Author information

1
Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky 40536, USA.

Abstract

Activated ras is known to dysregulate TGF-beta signaling by altering the expression of TGF-beta type II receptor (RII). It is well documented that tumor cells harboring mutant ras are more resistant to radiation than cells with wild-type ras. In this study, we hypothesized that the use of farnesyltransferase inhibitor (FTI, L-744,832) may directly restore TGF-beta signaling through RII expression via ras dependent or independent pathway leading to induction of radiation sensitivity. Two pancreatic cancer cell lines, BxPC-3 and MIA PaCa-2 were used in this study. FTI inhibited farnesylation of Ras protein more significantly in MIA PaCa-2 than BxPC-3 cells. In contrast, MIA PaCa-2 cells were resistant to radiation when compared to BxPC-3 cells. BxPC-3 cells were more resistant to FTI than MIA PaCa-2 cells. In combination treatment, no significant radiosensitizing effect of FTI was observed in BxPC-3 cells at 5 or 10 microM. However, in MIA PaCa-2 cells, a significant radiosensitizing effect was observed at both 5 and 10 microM concentrations (P>0.004). The TGF-beta effector gene p21(waf1/cip1) was elevated in combination treatment in MIA PaCa-2 but not in BxPC-3 cells. In MIA PaCa-2 cells, FTI induced TGF-beta responsive promoter activity as assessed by 3TP-luciferase activity. A further induction of luciferase activity was observed in MIA PaCa-2 cells treated with radiation and FTI. Induction of TGF-beta signaling by FTI was mediated through restoration of the RII expression, as demonstrated by RT-PCR analysis. In addition, re-expression of RII by FTI was associated with a decrease in DNA methyltransferase 1 (DNMT1) levels. Thus, these findings suggest that the L-744,832 treatment restores the RII expression through inhibition of DNMT1 levels causing induction of TGF-beta signaling by radiation and this forms a novel molecular mechanism of radiosensitization by FTI.

PMID:
12420225
DOI:
10.1038/sj.onc.1205948
[Indexed for MEDLINE]
Free full text

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms

Substances

Grant support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Support Center