Format

Send to

Choose Destination
Protoplasma. 2002 Oct;220(1-2):39-49.

Ultrastructure of vascular cambial cell cytokinesis in pine seedlings preserved by cryofixation and substitution.

Author information

1
Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada.

Abstract

Trees depend on the secondary vascular cambium to produce cells for new xylem and phloem. The fusiform cells of this lateral meristem are long and narrow, presenting special challenges for arranging the mitotic spindle and phragmoplast. Fusiform cambial cells of Pinus ponderosa and Pinus contorta were studied by cryofixation and cryosubstitution which preserved ultrastructure and phases of cytokinesis with a resolution not previously attained. Membranous structures including the plasma membrane, tonoplast, and those of other organelles were smooth and unbroken, indicating that they were preserved while the protoplasm was in a fully turgid state. Mitotic spindles separated daughter chromosomes diagonally across the radial width of the cells. The cell plate was initiated at an angle to the cell axis between the anaphase chromosomes by a microtubule array which organized vesicles at the phragmoplast midline. Within the phragmoplast, vesicles initially joined across thin tubular projections and then amalgamated into a tubulo-vesicular network. Axial expansion of the cell plate generated two opposing phragmoplasts connected by a thin, extended bridge of cell plate and cytoplasm that was oriented along the cell axis. In the cytoplasmic bridge trailing each phragmoplast, the callose-rich tubular network gradually consolidated into a fenestrated plate and then a complete cell wall. Where new membrane merged with old, the parent plasmalemma appeared to be loosened from the cell wall and the membranes joined via a short tubulo-vesicular network. These results have not been previously reported in cambial tissue, but the same phases of cytokinesis have been observed in cryofixed root tips and suspension-cultured cells of tobacco.

PMID:
12417935
DOI:
10.1007/s00709-002-0033-8
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center