Send to

Choose Destination
J Biol Chem. 2003 Jan 17;278(3):1892-903. Epub 2002 Oct 30.

Activation of CCR5 by chemokines involves an aromatic cluster between transmembrane helices 2 and 3.

Author information

Institut de Recherche Interdisciplinaire en Biologie Humaine et Nucléaire, Université Libre de Bruxelles, Campus Erasme, 808 route de Lennik, B-1070 Bruxelles, Belgium.


CCR5 is a G protein-coupled receptor responding to four natural agonists, the chemokines RANTES (regulated on activation normal T cell expressed and secreted), macrophage inflammatory protein (MIP)-1 alpha, MIP-1 beta, and monocyte chemotactic protein (MCP)-2, and is the main co-receptor for the macrophage-tropic human immunodeficiency virus strains. We have previously identified a structural motif in the second transmembrane helix of CCR5, which plays a crucial role in the mechanism of receptor activation. We now report the specific role of aromatic residues in helices 2 and 3 of CCR5 in this mechanism. Using site-directed mutagenesis and molecular modeling in a combined approach, we demonstrate that a cluster of aromatic residues at the extracellular border of these two helices are involved in chemokine-induced activation. These aromatic residues are involved in interhelical interactions that are key for the conformation of the helices and govern the functional response to chemokines in a ligand-specific manner. We therefore suggest that transmembrane helices 2 and 3 contain important structural elements for the activation mechanism of chemokine receptors, and possibly other related receptors as well.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center