Format

Send to

Choose Destination
See comment in PubMed Commons below
Antiviral Res. 2002 Dec;56(3):233-51.

A post-CD4-binding step involving interaction of the V3 region of viral gp120 with host cell surface glycosphingolipids is common to entry and infection by diverse HIV-1 strains.

Author information

1
Department of Veterinary Sciences, The University of Texas M.D. Anderson Cancer Center, Science Park, 650 Cool Water Drive, Bastrop 78602, USA.

Abstract

The V3-loop region in the envelope protein gp120 of HIV is critical for viral infection, but its interaction with the target cells is not clear. Using synthetic peptides, representing linear V3 sequences as reagents, we obtained evidence to show inhibition of infection by both T-cell- and macrophage-tropic strains of human immunodeficiency virus type 1 (HIV-1) (X4 and R5, respectively), without interfering with gp120-CD4 interaction, by the V3 peptides through binding to host cell membrane glycosphingolipids (GSL). Synthetic peptides mimicking the central 15-21 amino acid sequence of the V3-loop region in both X4 and R5 strains of HIV-1 competed with and blocked the entry of both types of HIV isolates. These HIV-inhibitory V3 peptides exhibited specific binding to target cells that was not competed by antibodies to either the primary receptor CD4 or the co-receptors CXCR-4 and CCR5. However, R15K, the V3 peptide from HIV-1 IIIB gp120 exhibited specific binding to three distinct cell surface GSL: GM3, Gb3, and GalCer. Further, R15K inhibited GSL binding of gp120 from both HIV-1 IIIB (X4, Gb3-binding strain) and HIV-1 89.6 (X4R5, GM3-binding strain). Together, these results suggest a critical V3-mediated post-CD4-binding event involving cell surface GSL binding represented by the HIV-inhibitory V3 peptides, that is common for the entry of diverse HIV-1 strains and may be targeted for the development of novel HIV therapeutics aimed at blocking viral entry.

PMID:
12406507
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center