Format

Send to

Choose Destination
See comment in PubMed Commons below
Eur J Neurosci. 2002 Oct;16(8):1569-86.

Visual-vestibular interactive responses in the macaque ventral intraparietal area (VIP).

Author information

1
Laboratoire de Physiologie de la Perception et de l'Action, CNRS-Coll├Ęge de France, 11 place Marcelin Berthelot, F-75231 Paris Cedex 05, France. frank.bremmer@physik.uni-marburg.de

Abstract

Self-motion detection requires the interaction of a number of sensory systems for correct perceptual interpretation of a given movement and an eventual motor response. Parietal cortical areas are thought to play an important role in this function, and we have thus studied the encoding of multimodal signals and their spatiotemporal interactions in the ventral intraparietal area of macaque monkeys. Thereby, we have identified for the first time the presence of vestibular sensory input to this area and described its interaction with somatosensory and visual signals, via extracellular single-cell recordings in awake head-fixed animals. Visual responses were driven by large field stimuli that simulated either backward or forward self-motion (contraction or expansion stimuli, respectively), or movement in the frontoparallel plane (visual increments moving simultaneously in the same direction). While the dominant sensory modality in most neurons was visual, about one third of all recorded neurons responded to horizontal rotation. These vestibular responses were typically in phase with head velocity, but in some cases they could signal acceleration or even showed integration to position. The associated visual responses were always codirectional with the vestibular on-direction, i.e. noncomplementary. Somatosensory responses were in register with the visual preferred direction, either in the same or in the opposite direction, thus signalling translation or rotation in the horizontal plane. These results, taken together with data on responses to optic flow stimuli obtained in a parallel study, strongly suggest an involvement of area VIP in the analysis and the encoding of self-motion.

PMID:
12405971
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center