Rotational isomers of N-alkylpyridylporphyrins and their metal complexes. HPLC separation, (1)H NMR and X-ray structural characterization, electrochemistry, and catalysis of O(2)(.-) disproportionation

Inorg Chem. 2002 Nov 4;41(22):5874-81. doi: 10.1021/ic025556x.

Abstract

Rotational (atropo-) isomers of Mn(III) meso-tetrakis(N-alkylpyridinium-2-yl)porphyrins and corresponding metal-free porphyrin ligands (where alkyl is methyl, ethyl, n-butyl, n-hexyl) and Zn(II) meso-tetrakis(N-methyl(ethyl,n-hexyl)pyridinium-2-yl)porphyrins were separated and isolated by reverse-phase HPLC. The identity of the rotational isomers of metal-free meso-tetrakis(N-methylpyridinium-2-yl)porphyrin was established by (1)H NMR spectra and by the crystal structure of the fastest eluting fraction (R(f) = 7.7%, R(w) = 9.2%, P2(1)/c, Z = 8, a = 14.2846(15) A, b = 22.2158(24) A, c = 29.369(3) A, beta = 95.374(2) degrees ) which, in accordance with (1)H NMR interpretation, proved to be the alphabetaalphabeta isomer. This result, together with elution intensity patterns, was used to identify the fractions of other Mn(III)-porphyrins, Zn(II)-porphyrins, and corresponding metal-free ligands in the series. All of the atropoisomers were inert toward isomerization which was not observable for 30 days at room temperature and reached only 50% in 16 days at 90 degrees C in the case of the Mn(III)-ethyl analogue. However, a complete freeze-dry removal of the mobile phase from the HPLC fractions caused an almost 100% isomerization. The Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin, as a mixture of atropoisomers (AEOL-10113), has been shown to offer protection in oxidative stress injury ascribed to its high reactivity toward superoxide (k(cat) = 5.8 x 10(7) M(-1) s(-1)) as a consequence of its favorable redox potential (E(1/2) = +228 mV vs NHE). In this work, the atropoisomers were found to have similar redox potentials ranging from +240 to +220 mV, to be similarly potent catalysts of O(2)(.-) disproportionation (dismutation), with k(cat) ranging from 5.5 x 10(7) to 6.8 x 10(7) M(-1) s(-1), and not to preferentially bind to biological tissue.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Brain / metabolism
  • Catalysis
  • Chromatography, High Pressure Liquid
  • Crystallography, X-Ray
  • Cytochrome c Group / metabolism
  • Electrochemistry
  • Free Radical Scavengers / metabolism
  • Liver / metabolism
  • Magnetic Resonance Spectroscopy
  • Metals / chemistry*
  • Mice
  • Oxygen / chemistry*
  • Porphyrins / chemical synthesis
  • Porphyrins / chemistry
  • Spectrophotometry, Ultraviolet
  • Superoxide Dismutase / metabolism
  • Xanthine Oxidase / chemistry

Substances

  • Cytochrome c Group
  • Free Radical Scavengers
  • Metals
  • Porphyrins
  • Superoxide Dismutase
  • Xanthine Oxidase
  • Oxygen