Send to

Choose Destination
See comment in PubMed Commons below
Drug Metab Dispos. 2002 Nov;30(11):1214-20.

Mechanism of the reduced elimination clearance of benzylpenicillin from cerebrospinal fluid in rats with intracisternal administration of lipopolysaccharide.

Author information

Department of Pharmaceutics, College of Pharmacy, Seoul National University, Kwanak-gu, Korea.


The mechanism responsible for the reduced clearance of benzylpenicillin (BPC) from the cerebrospinal fluid (CSF) was investigated in rats that received an intracisternal administration of lipopolysaccharide (LPS). BPC was intraventricularly injected and its elimination from the CSF studied. During the inflammation created by the LPS administration to the cisterna magna, the clearance of BPC and taurine from the CSF was significantly reduced but reverted to the control level when N-nitro-L-arginine, a nitric oxide (NO) synthase inhibitor, was intracisternally administered. The in vitro uptake of BPC and taurine was significantly reduced in the choroid plexus (CP, the blood-CSF barrier) of rats with experimental inflammation and in control CP that had been pretreated with sodium nitroprusside (SNP, an NO donor). Interestingly, the clearance and CP uptake of formycin B, a substrate for a nucleoside transporter, were not affected by the experimental inflammation or by pretreatement with SNP. These observations suggest that the BPC transporter, and probably other transport systems as well, is functionally sensitive to NO in the blood-CSF barrier. Therefore, functional impairment of BPC transport in the CP by NO may be partly responsible for the increase in BPC concentration in the CSF during inflammation such as that caused by meningitis.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons


    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center