Format

Send to

Choose Destination
See comment in PubMed Commons below
Nature. 2002 Oct 17;419(6908):712-5.

Jasmonate and salicylate induce expression of herbivore cytochrome P450 genes.

Author information

1
Department of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China. lxc@life.uiuc.edu

Abstract

Jasmonate and salicylate are plant-produced signals that activate plant defence genes after herbivory or pathogen attack. Amplification of these signals, evoked by either enemy attack or experimental manipulation, leads to an increase in the synthesis of toxic compounds (allelochemicals) and defence proteins in the plants. Although the jasmonate and salicylate signal cascades activate different sets of plant defence genes, or even act antagonistically, there is substantial communication between the pathways. Jasmonate and salicylate also contribute to protecting plants against herbivores by causing plants that experience insect damage to increase their production of volatile molecules that attract natural enemies of herbivorous insects. In response to plant defences, herbivores increase their production of enzymes that detoxify allelochemicals, including cytochrome P450s (refs 15, 16). But herbivores are potentially vulnerable to toxic allelochemicals in the duration between ingesting toxins and induction of detoxification systems. Here we show that the corn earworm Helicoverpa zea uses jasmonate and salicylate to activate four of its cytochrome P450 genes that are associated with detoxification either before or concomitantly with the biosynthesis of allelochemicals. This ability to 'eavesdrop' on plant defence signals protects H. zea against toxins produced by host plants.

PMID:
12384696
DOI:
10.1038/nature01003
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Support Center