Send to

Choose Destination
See comment in PubMed Commons below
J Mol Biol. 2002 Oct 18;323(2):345-62.

Kinetic analysis of the interactions between troponin C and the C-terminal troponin I regulatory region and validation of a new peptide delivery/capture system used for surface plasmon resonance.

Author information

  • 1Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, 4200 East 9th Avenue, Denver, CO 80262, USA.


Using surface plasmon resonance (SPR)-based biosensor analysis and fluorescence spectroscopy, the apparent kinetic constants, k(on) and k(off), and equilibrium dissociation constant, K(d), have been determined for the binding interaction between rabbit skeletal troponin C (TnC) and rabbit skeletal troponin I (TnI) regulatory region peptides: TnI(96-115), TnI(96-131) and TnI(96-139). To carry out SPR analysis, a new peptide delivery/capture system was utilized in which the TnI peptides were conjugated to the E-coil strand of a de novo designed heterodimeric coiled-coil domain. The TnI peptide conjugates were then captured via dimerization to the opposite strand (K-coil), which was immobilized on the biosensor surface. TnC was then injected over the biosensor surface for quantitative binding analysis. For fluorescence spectroscopy analysis, the environmentally sensitive fluoroprobe 5-((((2-iodoacetyl)amino)ethyl)amino) naphthalene-1-sulfonic acid (1,5-IAEDANS) was covalently linked to Cys98 of TnC and free TnI peptides were added. SPR analysis yielded equilibrium dissociation constants for TnC (plus Ca(2+)) binding to the C-terminal TnI regulatory peptides TnI(96-131) and TnI(96-139) of 89nM and 58nM, respectively. The apparent association and dissociation rate constants for each interaction were k(on)=2.3x10(5)M(-1)s(-1), 2.0x10(5)M(-1)s(-1) and k(off)=2.0x10(-2)s(-1), 1.2x10(-2)s(-1) for TnI(96-131) and TnI(96-139) peptides, respectively. These results were consistent with those obtained by fluorescence spectroscopy analysis: K(d) being equal to 130nM and 56nM for TnC-TnI(96-131) and TnC-TnI(96-139), respectively. Interestingly, although the inhibitory region peptide (TnI(96-115)) was observed to bind with an affinity similar to that of TnI(96-131) by fluorescence analysis (K(d)=380nM), its binding was not detected by SPR. Subsequent investigations examining salt effects suggested that the binding mechanism for the inhibitory region peptide is best characterized by an electrostatically driven fast on-rate ( approximately 1x10(8) to 1x10(9)M(-1)s(-1)) and a fast off-rate ( approximately 1x10(2)s(-1)). Taken together, the determination of these kinetic rate constants permits a clearer view of the interactions between the TnC and TnI proteins of the troponin complex.

[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center