Send to

Choose Destination
See comment in PubMed Commons below
J Agric Food Chem. 2002 Oct 23;50(22):6434-9.

Sorption behavior of triazole fungicides in Indian soils and its correlation with soil properties.

Author information

  • 1Division of Agricultural Chemicals, Indian Agricultural Research Institute, New Delhi 110 012, India.


Adsorption-desorption of triazole fungicides, hexaconazole [2-(2,4-dichlorophenyl)-1-(1H-1,2,4,-triazol-1-yl) hexan-2-ol], triadimefon [1-(4-chlorophenoxy)-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl) butan-2-one], and penconazole[1-(2,4-dichloro-beta-propyl phenethyl)-1H-1,2,4-triazole] was studied in five Indian soils using batch method. The adsorption isotherms fitted very well to the Freundlich equation. Adsorption of various triazole fungicides increased in this order: triadimefon > hexaconazole > penconazole. The product of the Freundlich adsorption constants, K(f)(1/n), showed good correlation with the soil organic carbon (OC) content, suggesting that soil OC is the main controlling factor for triazoles adsorption. Clay and silt content of the soil also affected the adsorption constants. Adsorption of hexaconazole and triadimefon was nearly reversible in two low OC soils (soil 3, soil 5) where 90-100% of the sorbed fungicides was released in a single washing step. Otherwise, desorption of triazole fungicides showed hysteresis, and 30-60% of the triazole fungicides were retained by the soil after single washing. IR spectra showed that H-bonds and charge-transfer bonds between humic acid and fungicides probably operated as mechanisms of adsorption.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center