Format

Send to

Choose Destination
Can J Microbiol. 2002 Aug;48(8):697-706.

Occurrence of several genes encoding putative reductive dehalogenases in Desulfitobacterium hafniense/frappieri and Dehalococcoides ethenogenes.

Author information

1
Institut national de la recherche scientifique, Institut Armand-Frappier, Laval, QC, Canada. richard.villemur@inrs-iaf.uquebec.ca

Erratum in

  • Can J Microbiol. 2002 Oct;48(10):945..

Abstract

Desulfitobacterium frappieri PCP-1 has the capacity to dehalogenate several halogenated aromatic compounds by reductive dehalogenation, however, the genes encoding the enzymes involved in such processes have not yet been identified. Using a degenerate oligonucleotide corresponding to a conserved sequence of CprA/PceA reductive dehalogenases, a cprA-like gene fragment was amplified by PCR from this bacterial strain. A Desulfitobacterium frappieri PCP-1 cosmid library was screened with the PCR product, allowing the cloning and sequencing of a 1.9-kb fragment. This fragment contains a nucleic acid sequence identical to one genomic contig of Desulfitobacterium hafniense, a bacterium closely related to Desulfitobacterium frappieri that is also involved in reductive dehalogenation. Other genes related to the Desulfitobacterium dehalogenans cpr locus were identified in this contig. Interestingly, the gene arrangement shows the presence of two copies of cprA-, cprB-, cprC-, cprD-, cprK-, and cprT-related genes, suggesting that gene duplication occurred within this chromosomic region. The screening of Delfitobacterium hafniense genomic contigs with a CprA-deduced amino acid sequence revealed two other cprA-like genes. Microbial genomes available in gene databases were also analyzed for sequences related to CprA/PceA. Two open reading frames encoding other putative reductive dehalogenases in Desulfitobacterium hafniense contigs were detected, along with 17 in the Dehalococcoides ethenogenes genome, a bacterium involved in the reductive dehalogenation of tetrachloroethene to ethene. The fact that several gene encoding putative reductive dehalogenases exist in Delfitobacterium hafniense, probably in other members of the genus Desulfitobacterium, and in Dehalococcoides ethenogenes suggests that these bacteria use distinct but related enzymes to achieve the dehalogenation of several chlorinated compounds [corrected].

PMID:
12381026
DOI:
10.1139/w02-057
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center