Send to

Choose Destination
Toxicol Sci. 2002 Oct;69(2):306-16.

Coordination of altered DNA repair and damage pathways in arsenite-exposed keratinocytes.

Author information

Intramural Microarray Center, Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, NC 27709, USA.


Human exposure to arsenic, a ubiquitous and toxic environmental pollutant, is associated with an increased incidence of skin cancer. However, the mechanism(s) associated with AsIII-mediated toxicity and carcinogenesis at low levels of exposure remains elusive. Aberrations in cell proliferation, oxidative damage, and DNA-repair fidelity have been implicated in sodium arsenite (AsIII)-mediated carcinogenicity and toxicity, but these events have been examined in isolation in the majority of biological models of arsenic exposure. We hypothesized that the simultaneous interaction of these effects may be important in arsenic-mediated neoplasia in the skin. To evaluate this, normal human epidermal keratinocytes (NHEK) were exposed to nontoxic doses (0.005-5 micro M) of AsIII and monitored for several physiological endpoints at the times when cells were harvested for gene expression measurements (1-24 h). Two-fluor cDNA microarray analyses indicated that AsIII treatment decreased the expression of genes associated with DNA repair (e.g., p53 and Damage-specific DNA-binding protein 2) and increased the expression of genes indicative of the cellular response to oxidative stress (e.g., Superoxide dismutase 1, NAD(P)H quinone oxidoreductase, and Serine/threonine kinase 25). AsIII also modulated the expression of certain transcripts associated with increased cell proliferation (e.g., Cyclin G1, Protein kinase C delta), oncogenes, and genes associated with cellular transformation (e.g., Gro-1 and V-yes). These observations correlated with measurements of cell proliferation and mitotic measurements as AsIII treatment resulted in a dose-dependent increase in cellular mitoses at 24 h and an increase in cell proliferation at 48 h of exposure. Data in this manuscript demonstrates that AsIII exposure simultaneously modulates DNA repair, cell proliferation, and redox-related gene expression in nontransformed, normal NHEK. It is anticipated that data in this report will serve as a foundation for furthering our knowledge of AsIII-regulated gene expression in skin and other tissues and contribute to a better understanding of arsenic toxicity and carcinogenesis.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center