Format

Send to

Choose Destination
See comment in PubMed Commons below
Neuroimage. 2002 Oct;17(2):732-41.

Cortical processing of noxious somatosensory stimuli in the persistent vegetative state.

Author information

1
Cyclotron Research Center, University of Liège B30, Department of Neurology, CHU B35, Sart Tilman, 4000 Liège, Belgium. steven.laureys@ulg.ac.be

Abstract

The persistent vegetative state (PVS) is a devastating medical condition characterized by preserved wakefulness contrasting with absent voluntary interaction with the environment. We used positron emission tomography to assess the central processing of noxious somatosensory stimuli in the PVS. Changes in regional cerebral blood flow were measured during high-intensity electrical stimulation of the median nerve compared with rest in 15 nonsedated patients and in 15 healthy controls. Evoked potentials were recorded simultaneously. The stimuli were experienced as highly unpleasant to painful in controls. Brain glucose metabolism was also studied with [(18)F]fluorodeoxyglucose in resting conditions. In PVS patients, overall cerebral metabolism was 40% of normal values. Nevertheless, noxious somatosensory stimulation-activated midbrain, contralateral thalamus, and primary somatosensory cortex in each and every PVS patient, even in the absence of detectable cortical evoked potentials. Secondary somatosensory, bilateral insular, posterior parietal, and anterior cingulate cortices did not show activation in any patient. Moreover, in PVS patients, the activated primary somatosensory cortex was functionally disconnected from secondary somatosensory, bilateral posterior parietal, premotor, polysensory superior temporal, and prefrontal cortices. In conclusion, somatosensory stimulation of PVS patients, at intensities that elicited pain in controls, resulted in increased neuronal activity in primary somatosensory cortex, even if resting brain metabolism was severely impaired. However, this activation of primary cortex seems to be isolated and dissociated from higher-order associative cortices.

PMID:
12377148
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center