Format

Send to

Choose Destination
Inorg Chem. 2002 Oct 21;41(21):5475-8.

Corynebactin and a serine trilactone based analogue: chirality and molecular modeling of ferric complexes.

Author information

1
W. R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352-9904, USA.

Abstract

Because the hydrolysis of ferric ion makes it very insoluble in aerobic, near neutral pH environments, most species of bacteria produce siderophores to acquire iron, an essential nutrient. The chirality of the ferric siderophore complex plays an important role in cell recognition, uptake, and utilization. Corynebactin, isolated from Gram-positive bacteria, is structurally similar to enterobactin, a well-known siderophore first isolated from Gram-negative bacteria, but contains L-threonine instead of L-serine in the trilactone backbone. Corynebactin also contains a glycine spacer unit in each of the chelating arms. A hybrid analogue (serine-corynebactin) has been prepared which has the trilactone ring of enterobactin and the glycine spacer of corynebactin. The chirality and relative conformational stability of the three ferric complexes of enterobactin, corynebactin, and the hybrid have been investigated by molecular modeling (including MM3 and pBP86/DN density functional theory calculations) and circular dichroism spectra. While enterobactin forms a Delta-ferric complex, corynebactin is Lambda. The hybrid serine-corynebactin forms a nearly racemic mixture, with the Lambda-conformer in slight excess. Each ferric complex has four possible isomers depending on the metal chirality and the conformation of the trilactone ring. For corynebactin, the energy difference between the two possible Lambda conformations is 2.3 kcal/mol. In contrast, only 1.5 kcal/mol separates the inverted Lambda- and normal Delta-configuration for serine-corynebactin. The small energy difference of the two lowest energy configurations is the likely cause for the racemic mixture found in the CD spectra. Both the addition of a glycine spacer and methylation of the trilactone ring (serine to threonine) favor the Lambda-conformation. These structural changes suffice to change the chirality from all Delta (enterobactin) to all Lambda (corynebactin). The single change (glycine spacer) of the hybrid ferric serine-corynebactin gives a mixture of Delta and Lambda, with the Lambda in slight excess.

PMID:
12377042
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center