Format

Send to

Choose Destination
Am J Physiol Renal Physiol. 2002 Nov;283(5):F1098-104.

Apical H(+)/base transporters mediating bicarbonate absorption and pH(i) regulation in the OMCD.

Author information

1
Department of Physiology and Biophysics, College of Medicine, University of South Florida, Tampa, Florida 33612, USA.

Abstract

The outer medullary collecting duct (OMCD) plays an important role in mediating transepithelial HCO transport [J(HCO(3)(-))] and urinary acidification. HCO absorption by type A intercalated cells in the OMCD inner stripe (OMCD(is)) segment is thought to by mediated by an apical vacuolar H(+)-ATPase and H(+)-K(+)-ATPase coupled to a basolateral Cl(-)-HCO exchanger (AE1). Besides these Na(+)-independent transporters, previous studies have shown that OMCD(is) type A intercalated cells have an apical electroneutral EIPA-sensitive, DIDS-insensitive Na(+)-HCO cotransporter (NBC3); a basolateral Na(+)/H(+) antiporter; and a basolateral Na(+)-K(+)-ATPase. In this study, we reexamined the Na(+) dependence of transepithelial Na(+) transport in the OMCD(is) and determined the role of apical NBC3 in intracellular (pH(i)) regulation in OMCD(is) type A intercalated cells. Control tubules absorbed HCO at a rate of approximately 13 pmol. min(-1). mm(-1). Lowering luminal Na(+) from 140 to 40 mM decreased [J(HCO(3)(-))] by approximately 15% without a change in transepithelial potential (V(te)). Furthermore, 50 microM EIPA (lumen) also decreased [J(HCO(3)(-))] by approximately 13% without a change in V(te). The effect of lowering luminal Na(+) and adding EIPA were not additive. These results demonstrate that [J(HCO(3)(-))] in the OMCD(is) is in part Na(+) dependent. In separate experiments, the pH(i) recovery rate after an NH prepulse was monitored in single type A intercalated cells with confocal fluorescence microscopy. The pH(i) recovery rate was approximately 0.21 pH/min in Na(+)-containing solutions and decreased to approximately 0.16 pH/min with EIPA (50 microM, lumen). In tubules perfused/bathed without Na(+), luminal Na(+) addition resulted in a pH(i) recovery rate of approximately 0.36 pH/min, whereas the Na(+)-independent recovery rate was approximately 0.16 pH/min. EIPA (50 microM, lumen) decreased the Na(+)-dependent pH(i) recovery rate to approximately 0.07 pH/min. The Na(+)-independent recovery rate was decreased to approximately 0.06 pH/min by bafilomycin (10 nM, lumen) and to approximately 0.10 pH/min using Schering 28080 (10 microM, lumen). These findings indicate that NBC3 contributes to pH(i) regulation in OMCD(is) type A intercalated cells and plays only a minor role in mediating [J(HCO(3)(-))] in the OMCD(is).

PMID:
12372786
DOI:
10.1152/ajprenal.0241.2001
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center