Format

Send to

Choose Destination
Forensic Sci Int. 2002 Oct 9;129(3):168-86.

Hair-MAP: a prototype automated system for forensic hair comparison and analysis.

Author information

1
Crime Laboratory Bureau, Denver Police Department, 1331 Cherokee Street, Denver, CO 80204, USA.

Abstract

This paper demonstrates the feasibility of the automation of forensic hair analysis and comparison task using neural network explanation systems (NNESs). Our system takes as input microscopic images of two hairs and produces a classification decision as to whether or not the hairs came from the same person. Hair images were captured using a NEXTDimension video board in a NEXTDimension color turbo computer, connected to a video camera. Image processing was done on an SGI indigo workstation. Each image is segmented into a number of pieces appropriate for classification of different features. A variety of image processing techniques are used to enhance this information. Use of wavelet analysis and the Haralick texture algorithm to pre-process data has allowed us to compress large amounts of data into smaller, yet representative data. Neural networks are then used for feature classification. Finally, statistical tests determine the degree of match between the resulting collection of hair feature vectors. An important issue in automation of any task in criminal investigations is the reliability and understandability of the resulting system. To address this concern, we have developed methods to facilitate explanation of neural network's behavior using a decision tree. The system was able to achieve a performance of 83% hair match accuracy, using 5 of the 21 morphological characteristics used by experts. This shows promise for the usefulness of a fuller scale system. While an automated system would not replace the expert, it would make the task easier by providing a means for pre-processing the large amount of data with which the expert must contend.

PMID:
12372687
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center