Send to

Choose Destination
See comment in PubMed Commons below
Hear Res. 2002 Nov;173(1-2):164-71.

Antioxidant status and hearing function in noise-exposed workers.

Author information

Yale Occupational and Environmental Medicine Program, Yale University School of Medicine, 135 College Street, Third Floor, New Haven, CT 06510, USA.


The cellular antioxidant system appears to protect cochlear hair cells from oxidative stress due to noise and aging. The role of individual metabolic variables remains poorly understood, however. We examined the role of a number of metabolic factors on human cochlear function in noise-exposed individuals. In 58 factory workers we measured audiometry and distortion product otoacoustic emissions prior to a workshift. Simultaneously we measured levels of vitamin E, vitamin C, and polymorphism status for two metabolic genes related to glutathione S-transferase function (GSTM1 and GSTT1). Age and total noise exposure were predictive of hearing status. Vitamin E levels were negatively correlated with hearing function, and this effect was partly explained by an increase in vitamin E levels with age. No effect was found for vitamin C. Individuals possessing the GSTM1 gene had significantly better high frequency otoacoustic emissions compared to GSTM1 null individuals. The protective effect of GSTM1 was present even after adjusting for age, race, sex, and years of noise exposure. GSTT1 did not exhibit a similarly protective effect. While the cross-sectional nature of the study precludes drawing conclusions about causation, these data suggest that GSTM1, an antioxidant enzyme which is found in the mammalian cochlea, may play a protective role in humans against hair cell damage due to noise or aging.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center