Send to

Choose Destination
Curr Biol. 2002 Sep 17;12(18):1623-7.

Drs2p-dependent formation of exocytic clathrin-coated vesicles in vivo.

Author information

Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235-1634, USA.


The small GTP binding protein ARF has been implicated in budding clathrin-coated vesicles (CCVs) from Golgi and endosomal membranes. An arf1 synthetic lethal screen identified DRS2/SWA3 along with a clathrin heavy-chain conditional allele (chc1-5/swa5-1) and SWA2, encoding the yeast auxilin-like protein involved in uncoating CCVs. Drs2p/Swa3p is a P-type ATPase and a potential aminophospholipid translocase that localizes to the trans-Golgi network (TGN) in yeast. Genetic and phenotypic analyses of drs2Delta mutants suggested that Drs2p was required for clathrin function. To address a potential role for Drs2p in CCV formation from the TGN in vivo, we have performed epistasis analyses between drs2 and mutations that cause accumulation of distinct populations of post-Golgi vesicles. We find that Drs2p is required to form a specific class of secretory vesicles that accumulate when the actin cytoskeleton is disrupted. Accumulation of these vesicles also requires clathrin and is perturbed by mutation of AP-1, but not AP-2, AP-3, or GGA adaptins. Most of the accumulated vesicles are uncoated; however, clathrin coats can be partially stabilized on these vesicles by deletion of SWA2. These data provide the first in vivo evidence for an integral membrane protein requirement in forming CCVs.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center