Format

Send to

Choose Destination
See comment in PubMed Commons below
J Physiol Pharmacol. 2002 Sep;53(3):383-94.

Effects of 5-HT1B receptor ligands microinjected into the accumbal shell or core on the cocaine-induced locomotor hyperactivity in rats.

Author information

  • 1Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków. przegal@if-pan.krakow.pl

Abstract

The present study was designed to examine the effect of 5-HT1B receptor ligands microinjected into the subregions of the nucleus accumbens (the shell and the core) on the locomotor hyperactivity induced by cocaine in rats. Male Wistar rats were implanted bilaterally with cannulae into the accumbens shell or core, and then were locally injected with GR 55562 (an antagonist of 5-HT1B receptors) or CP 93129 (an agonist of 5-HT1B receptors). Given alone to any accumbal subregion, GR 55562 (0.1-10 microg/side) or CP 93129 (0.1-10 microg/side) did not change basal locomotor activity. Systemic cocaine (10 mg/kg) significantly increased the locomotor activity of rats. GR 55562 (0.1-10 microg/side), administered intra-accumbens shell prior to cocaine, dose-dependently attenuated the psychostimulant-induced locomotor hyperactivity. Such attenuation was not found in animals which had been injected with GR 55562 into the accumbens core. When injected into the accumbens shell (but not the core) before cocaine, CP 93129 (0.1-10 microg/side) enhanced the locomotor response to cocaine; the maximum effect being observed after 10 microg/side of the agonist. The later enhancement was attenuated after intra-accumbens shell treatment with GR 55562 (1 microg/side). Our findings indicate that cocaine induced hyperlocomotion is modified by 5-HT1B receptor ligands microinjected into the accumbens shell, but not core, this modification consisting in inhibitory and facilitatory effects of the 5-HT1B receptor antagonist (GR 55562) and agonist (CP 93129), respectively. In other words, the present results suggest that the accumbal shell 5-HT1B receptors play a permissive role in the behavioural response to the psychostimulant.

PMID:
12369736
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Institute of Pharmacology Polish Academy of Sciences
    Loading ...
    Support Center