Format

Send to

Choose Destination
See comment in PubMed Commons below
Histochem J. 2002 Jan-Feb;34(1-2):1-12.

Fas and Fas ligand immunolocalization in pancreatic islets of NOD mice during spontaneous and cyclophosphamide-accelerated diabetes.

Author information

1
School of Biological Sciences, University of Auckland, New Zealand.

Abstract

During insulin-dependent diabetes mellitus, immune cells which infiltrate pancreatic islets mediate beta cell destruction over a prolonged asymptomatic prediabetic period. The molecular mechanisms of beta cell death in vivo remain unresolved. At least two major molecular processes of destruction have been proposed. One involves the Fas-FasL (Fas-Fas ligand) system and the other, the perforin pathway. Here, dual-label immunohistochemistry was employed to examine the intra-islet expression, distribution and cellular sources of Fas and FasL in the NOD mouse, during spontaneous diabetes (days 21, 40 and 90) and following acceleration of diabetes with cyclophosphamide (days 0, 4, 7, 11 and 14 after cyclophosphamide administration). The expression of the proteins was correlated with advancing disease. FasL was expressed constitutively in most beta cells but not in glucagon or somatostatin cells or islet inflammatory cells and paralleled the loss of insulin immunolabelling with advancing disease. It was also expressed in beta cells of non-diabetes prone CD-1 and C57BL/6 mice from a young age (day 21). Strong immunolabelling for Fas was first observed in extra-islet macrophages and those close to the islet in NOD and non-diabetes-prone mice. During spontaneous and cyclophosphamide diabetes, it was observed in a higher proportion of islet infiltrating macrophages than CD4 and CD8 T cells, concomitant with advancing insulitis. In cyclophosphamide-treated mice, the proportion of Fas-positive intra-islet CD4 and CD8 T cells at day 14 (with and without diabetes) was considerably higher than at days 0, 4, 7 and 11. At days 11 and 14, a proportion of Fas-positive intra-islet macrophages co-expressed interleukin-1beta and inducible nitric oxide synthase. Fas was not detectable in beta cells and other islet endocrine cells during spontaneous and cyclophosphamide induced diabetes. Our results show constitutive expression of FasL in beta cells in the NOD mouse and predominant expression of Fas in intra-islet macrophages and to a lesser extent in T cells prior to diabetes onset. Interleukin-1beta in intra-islet macrophages may induce Fas and inducible nitric oxide synthase expression in an autocrine and paracrine manner and mediate beta cell destruction or even death of some macrophages and T cells. However, other mechanisms of beta cell destruction during spontaneous and cyclophosphamide-accelerated diabetes and independent of Fas-FasL, require examination.

PMID:
12365794
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center