Send to

Choose Destination
Neuropeptides. 2002 Apr-Jun;36(2-3):209-20.

Mutant mouse models of insulin-like growth factor actions in the central nervous system.

Author information

Department of Pediatrics, Division of Endocrinology, University of North Carolina at Chapel Hill, North Carolina 27599-7220, USA.


Insulin-like growth factor-I (IGF-I) and its cognate receptor, the type 1 IGF receptor (IGF1R), as well as high-affinity IGF binding proteins (IGFBP) that modulate IGF-I actions, are expressed throughout the course of brain development. These observations, taken together with studies in cultured neural cells demonstrating a variety of IGF-I growth-promoting activities, provide a strong argument for IGF-I having a central role in the growth and development of the CNS. This report reviews studies of brain development in mutant mice with alterations of IGF-I expression or action. Transgenic (Tg) mice overexpressing IGF-I postnatally exhibit brain overgrowth characterized by increased neuron and oligodendrocyte number, as well as marked increases in myelination. Mutant mice with ablated IGF-I and IGF1R expression, as well as those with overexpression of IGFBPs capable of inhibiting IGF actions, exhibit brain growth retardation with a variety of growth deficits. These studies confirm a role for IGF-I in neural development, and indicate that IGF-I stimulates neurogenesis and synaptogenesis, facilitates oligodendrocyte development, promotes neuron and oligodendrocyte survival, and stimulates myelination. Evidence from experiments in these mouse models also indicates that IGF-I has a role in recovery from neural injury.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center