Send to

Choose Destination
Virology. 2002 Sep 15;301(1):109-20.

Murine coronavirus spike glycoprotein mediates degree of viral spread, inflammation, and virus-induced immunopathology in the central nervous system.

Author information

Department of Microbiology, University of pennsylvania School of Medicine, Philadelphia 19104-6076, USA.


The mouse hepatitis virus (MHV) spike glycoprotein is a major determinant of neurovirulence. We investigated how alterations in spike affect neurovirulence using two isogenic recombinant viruses differing exclusively in spike. S(4)R, containing the MHV-4 spike gene, is dramatically more neurovirulent than S(A59)R, containing the MHV-A59 spike gene (J. J. Phillips, M. M. Chua, E. Lavi, and S. R. Weiss, 1999, J. Virol. 73, 7752-7760). We examined the contribution of differences in cellular tropism, viral spread, and the immune response to infection to the differential neurovirulence of S(4)R and S(A59)R. MHV-4 spike-mediated neurovirulence was associated with extensive viral spread in the brain in both neurons and astrocytes. Infection of primary hippocampal neuron cultures demonstrated that S(4)R spread more rapidly than S(A59)R and suggested that spread may occur between cells in close physical contact. In addition, S(4)R infection induced a massive influx of lymphocytes into the brain, a higher percentage of CD8(+) T cells, and a higher frequency of MHV-specific CD8(+) T cells relative S(A59)R infection. Despite this robust and viral-specific immune response to S(4)R infection, infection of RAG1-/- mice suggested that immune-mediated pathology also contributes to the high neurovirulence of S(4)R.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center