Send to

Choose Destination
See comment in PubMed Commons below
Appl Environ Microbiol. 2002 Oct;68(10):4956-64.

Growth-dependent stable carbon isotope fractionation by basidiomycete fungi: delta(13)C pattern and physiological process.

Author information

Ecosystem Sciences Division, Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720-3110, USA.


We grew 11 basidiomycetes in axenic culture to characterize their physiological capacities to fractionate stable C isotopes. Generally, delta(13)C values of the fungal biomass were (i) enriched in (13)C relative to the growth medium, (ii) variable among the isolates, and (iii) dependent on the growth rate and growth stage of the fungi. We found a multiphasic dynamic of fractionation for Cryptoporus volvatus and Marasmius androsaceus during various growth stages. The first phase, P1, corresponded to the exponential growth stage and was characterized by an increasing enrichment in (13)C content of the fungal biomass relative to the growth medium ranging between 4.6 and 6.9 per thousand. The second phase, P2, exhibited a continual depletion in (13)C of the fungal biomass, with the delta(13)C values of the fungal biomass asymptotically returning to the delta(13)C value of the growth medium at inoculation. The expression of the various fractionation phases was dependent on the amount of low-concentration micronutrients and growth factors added to the growth medium. The onset of P2 occurred at reduced concentrations of these elements. All of the sugars in the growth medium (sucrose, maltose, and glucose) were utilized for growth, indicating that the observed fractionation was not an artifact derived from the preferential use of (13)C-rich maltose, which was found at low concentrations in the growth medium. In this study, we establish a framework with which to explore the impact of physiological fractionations by fungal interfaces on natural distributions of stable C isotopes.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center