Format

Send to

Choose Destination
See comment in PubMed Commons below
J Theor Biol. 2002 Sep 7;218(1):35-46.

Darwinian selection leads to Gaia.

Author information

1
Department of Mathematics and Statistics, University of Guelph, Guelph, Ontario, Canada N1G 2W1. staleymark@hotmail.com

Abstract

The Gaia hypothesis, in its strongest form, states that the Earth's atmosphere, oceans, and biota form a tightly coupled system that maintains environmental conditions close to optimal for life. According to Gaia theory, optimal conditions are intrinsic, immutable properties of living organisms. It is assumed that the role of Darwinian selection is to favor organisms that act to stabilize environmental conditions at these optimal levels. In this paper, an alternative form of Gaia theory based on more traditional Darwinian principles is proposed. In the new approach, environmental regulation is a consequence of population dynamics, not Darwinian selection. The role of selection is to favor organisms that are best adapted to prevailing environmental conditions. However, the environment is not a static backdrop for evolution, but is heavily influenced by the presence of living organisms. The resulting co-evolving dynamical process eventually leads to the convergence of equilibrium and optimal conditions. A simple Daisyworld model is used to illustrate this convergence phenomenon. Sensitivity analysis of the Daisyworld model suggests that in stable ecosystems, the convergence of equilibrium and optimal conditions is inevitable, provided there are no externally driven shocks to the system. The end result may appear to be the product of a cooperative venture, but is in fact the outcome of Darwinian selection acting upon "selfish" organisms.

PMID:
12297068
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center