Format

Send to

Choose Destination
See comment in PubMed Commons below
Environ Sci Technol. 2002 Sep 15;36(18):3977-84.

A real-time polymerase chain reaction method for monitoring anaerobic, hydrocarbon-degrading bacteria based on a catabolic gene.

Author information

  • 1Lawrence Livermore National Laboratory, Livermore, California 94551, USA. beller2@llnl.gov

Abstract

We have developed a real-time polymerase chain reaction (PCR) method that can quantify hydrocarbon-degrading bacteria in sediment samples based on a catabolic gene associated with the first step of anaerobic toluene and xylene degradation. The target gene, bssA, codes for the alpha-subunit of benzylsuccinate synthase. The primer-probe set for real-time PCR was based on consensus regions of bssA from four denitrifying bacterial strains; bssA sequences for two of these strains were determined during this study. The method proved to be sensitive (detection limit ca. 5 gene copies) and had a linear range of >7 orders of magnitude. We used the method to investigate how gasohol releases from leaking underground storage tanks could affect indigenous toluene-degrading bacteria. Microcosms inoculated with aquifer sediments from four different sites were incubated anaerobically with BTEX (benzene, toluene, ethylbenzene, and xylenes) and nitrate in the presence and absence of ethanol. Overall, population trends were consistent with observed toluene degradation activity: the microcosms with the most rapid toluene degradation also had the largest numbers of bssA copies. In the microcosms with the most rapid toluene degradation, numbers of bssA copies increased 100-to 1000-fold over the first 4 days of incubation, during which time most of the toluene had been consumed. These results were supported by slot blot analyses with unamplified DNA and by cloning and sequencing of putative bssA amplicons, which confirmed the real-time PCR method's specificity for bssA. Use of a companion real-time PCR method for estimating total eubacterial populations (based on 16S rDNA) indicated that, in some cases, ethanol disproportionately supported the growth of bacteria that did not contain bssA. The real-time PCR method for bssA could be a powerful tool for monitored natural attenuation of BTEX in fuel-contaminated groundwater. To our knowledge, this is the first reported molecular method that targets anaerobic, hydrocarbon-degrading bacteria based on a catabolic gene.

PMID:
12269751
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center