Send to

Choose Destination
Anal Chem. 2002 Sep 1;74(17):4397-409.

Ionization and fragmentation of humic substances in electrospray ionization Fourier transform-ion cyclotron resonance mass spectrometry.

Author information

Department of Chemistry and Biochemistry, Florida State University, Tallahassee 32306, USA.


Electrospray ionization (ESI) was combined with ultra-high-resolution Fourier transform-ion cyclotron resonance mass spectrometry (FTICR MS) to characterize complex humic and fulvic acid mixtures. Lower than expected molecular weight distributions previously observed for humics when analyzed by ESI-MS have fueled speculation about a bias in favor of low molecular weight. Multiply charged ions, ionization suppression, and sample fragmentation have all been suggested as sources of this low molecular weight bias. In this work, resolution of the individual components of humic mixtures within a 1 mass-to-charge unit window was accomplished by FTICR MS at 9.4 T. At mass resolving powers between 60,000 (high mass) and 120,000 (low mass), it was possible to determine that virtually all ions present in spectra of Suwannee River fulvic and humic acid are singly charged, thus eliminating inadequate accounting for multiply charged ions as a primary source of any low molecular weight bias. The high-resolution mass spectra also revealed the presence of molecular families containing ions that differ from each other in degree of saturation, functional group substitution (primarily CH vs N and CH4 vs O), and number of CH2 groups. Ionization suppression and ion fragmentation were addressed for humic and fulvic acid mixtures and well-characterized poly(ethylene glycol) (PEG) mixtures with average molecular weights of 8000 and 10,000. Although these high molecular weight PEG mixtures fragment extensively under traditional positive-ion mode ESI conditions, similar fragmentation could not be confirmed for humic and fulvic acid mixtures.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center