Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2002 Nov 22;277(47):45323-30. Epub 2002 Sep 15.

Intracellular calcium and myosin isoform transitions. Calcineurin and calcium-calmodulin kinase pathways regulate preferential activation of the IIa myosin heavy chain promoter.

Author information

Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA.


Intracellular calcium levels can have profound effects on muscle biology via alterations in gene expression. In particular, intracellular calcium levels increase during muscle activation and are thought to underlie fast-to-slow shifts in muscle gene expression. In the present work, we determined that increased intracellular calcium has a significant effect on the activity of the adult fast myosin heavy chain (MyHC) promoters in the order of MyHC IIa>> IId/x > IIb. We have identified the pathways by which the calcium signal mediates increased activation of the MyHC IIa promoter. Inhibition of calcineurin or calcium-calmodulin kinase greatly attenuates ionophore-induced activation of the MyHC IIa promoter, whereas protein kinase C inhibitors have no effect. Inhibition and overexpression studies with members of the mitogen-activated protein kinase family reveal roles for MEK1/MEK2 and MEKK1, but not p38 or phosphatidylinositol 3-kinase. Downstream mediators of these effects are the activities of the MEF-2 and NFAT transcription factors, whose binding sites in the MyHC IIa promoter are required for calcium-induced activation of the MyHC IIa promoter.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center