Send to

Choose Destination
See comment in PubMed Commons below
Plant Physiol. 1993 Oct;103(2):379-384.

Proteolysis during Development and Senescence of Effective and Plant Gene-Controlled Ineffective Alfalfa Nodules.

Author information

Laboratoire de Biologie Vegetale et Microbiologie Centre National de la Recherche Scientifique 1114, Universite de Nice-Sophia Antipolis, Parc Valrose, 06108 Cedex 2 France (D.P.).


Plant-controlled ineffective root nodules, conditioned by the in1 gene in Medicago sativa L. cv Saranac, undergo premature senescence and have reduced levels of many late nodulins. To ascertain which factors contribute to premature senescence, we have evaluated proteolysis as it occurs throughout the development of ineffective Saranac (in1Sa) and effective Saranac nodules. Cysteine protease activities with acidic pH optimum and enzyme proteins were present in both genotypes. We found that acidic protease activity was low in effective Saranac nodules throughout their development. In contrast, by 2 weeks after inoculation, acid protease activity of in1Sa nodules was severalfold higher than that of Saranac nodules and remained high until the experiment was terminated 8 weeks later. This increase in protease enzyme activity correlated with an increase in protease protein amounts. Increased protease activity and amount in in1Sa nodules was correlated with a decrease in nodule soluble protein. The time at which in1Sa nodules initially showed increased protease activity corresponded to when symbiosis deteriorated. High levels of phosphoenolpyruvate carboxylase (PEPC) protein were expressed in effective nodules by 12 d after inoculation and expression was associated with low proteolytic enzyme activity. In contrast, although PEPC was expressed in in1Sa nodules, PEPC protein was not found 12 d after inoculation and thereafter. Acidic protease from in1Sa nodules could also degrade purified leghemoglobin. These data indicate that premature senescence and low levels of late nodulins in in1Sa nodules can be correlated in part with increased proteolysis.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center