Format

Send to

Choose Destination
See comment in PubMed Commons below
Plant Physiol. 1995 Oct;109(2):697-706.

Cold Hardening of Spring and Winter Wheat and Rape Results in Differential Effects on Growth, Carbon Metabolism, and Carbohydrate Content.

Author information

  • 1Cooperative Research Centre for Plant Science, The Australian National University, GPO Box 475, Canberra ACT 2601, Australia (V.M.H.).

Abstract

The effect of long-term (months) exposure to low temperature (5[deg]C) on growth, photosynthesis, and carbon metabolism was studied in spring and winter cultivars of wheat (Triticum aestivum) and rape (Brassica napus). Cold-grown winter rape and winter wheat maintained higher net assimilation rates and higher in situ CO2 exchange rates than the respective cold-grown spring cultivars. In particular, the relative growth rate of spring rape declined over time at low temperature, and this was associated with a 92% loss in in situ CO2 exchange rates. Associated with the high photosynthetic rates of cold-grown winter cultivars was a 2-fold increase per unit of protein in both stromal and cytosolic fructose-1,6-bisphosphatase activity and a 1.5- to 2-fold increase in sucrose-phosphate synthase activity. Neither spring cultivar increased enzyme activity on a per unit of protein basis. We suggest that the recovery of photosynthetic capacity at low temperature and the regulation of enzymatic activity represent acclimation in winter cultivars. This allow these overwintering herbaceous annuals to maximize the production of sugars with possible cryoprotective function and to accumulate sufficient carbohydrate storage reserve to support basal metabolism and regrowth in the spring.

PMID:
12228623
PMCID:
PMC157638
[PubMed - as supplied by publisher]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center