Send to

Choose Destination
See comment in PubMed Commons below
Plant Physiol. 1995 Mar;107(3):775-782.

In Vivo Regulation of Wheat-Leaf Phosphoenolpyruvate Carboxylase by Reversible Phosphorylation.

Author information

Department of Biochemistry, University of Nebraska-Lincoln, East Campus, Lincoln, Nebraska 68583-0718.


Regulation of C3 phosphoenolpyruvate carboxylase (PEPC) and its protein-serine/threonine kinase (PEPC-PK) was studied in wheat (Triticum aestivum) leaves that were excised from low-N-grown seedlings and subsequently illuminated and/or supplied with 40 mM KNO3. The apparent phosphorylation status of PEPC was assessed by its sensitivity to L-malate inhibition at suboptimal assay conditions, and the activity state of PEPC-PK was determined by the in vitro 32P labeling of purified maize dephospho-PEPC by [[gamma]-32P]ATP/Mg. Illumination ([plus or minus]NO3-) for 1 h led to about a 4.5-fold increase in the 50% inhibition constant for L-malate, which was reversed by placing the illuminated detached leaves in darkness (minus NO3-). A 1 -h exposure of excised leaves to light, KNO3, or both resulted in relative PEPC-PK activities of 205, 119, and 659%, respectively, of the dark/0 mM KNO3 control tissue. In contrast, almost no activity was observed when a recombinant sorghum phosphorylation-site mutant (S8D) form of PEPC was used as protein substrate in PEPC-PK assays of the light plus KNO3 leaf extracts. In vivo labeling of wheat-leaf PEPC by feeding 32P-labeled orthophosphate showed that PEPC from light plus KNO3 tissue was substantially more phosphorylated than the enzyme in the dark minus-nitrate immunoprecipitates. Immunoblot analysis indicated that no changes in relative PEPC-protein amount occurred within 1 h for any of the treatments. Thus, C3 PEPC activity in these detached wheat leaves appears to be regulated by phosphorylation of a serine residue near the protein's N terminus by a Ca2+ -independent protein kinase in response to a complex interaction in vivo between light and N.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center