Involvement of Reactive Oxygen Species, Glutathione Metabolism, and Lipid Peroxidation in the Cf-Gene-Dependent Defense Response of Tomato Cotyledons Induced by Race-Specific Elicitors of Cladosporium fulvum

Plant Physiol. 1996 Apr;110(4):1367-1379. doi: 10.1104/pp.110.4.1367.

Abstract

The chronological order of responses to Cladosporium fulvum (Cooke) (Cf) race-specific elicitors was assessed in cotyledons of three near-isogenic tomato (Lycopersicon esculentum Mill.) lines carrying either Cf-9 or Cf-2 or no Cf gene. The responses observed were dependent on the presence of a Cf gene, Avr-gene product dose injected, and the relative humidity (RH) of the growth chamber. At ambient RH, superoxide formation and lipid peroxidation occurred after 2 h (Cf9) and 4 h (Cf2). At elevated RH (98%) and at lower avirulence elicitor dose, Cf-Avr-dependent lipid peroxidation was considerably attenuated. Significant electrolyte leakage occurred by 18 h but only at the lower RH. Total glutathione levels began to increase 2 to 4 h and 4 to 8 h after challenge of Cf9 and Cf2 cells, respectively, and by 48 h reached 665 and 570% of initial levels. A large proportion of this accumulation (87%) was as oxidized glutathione. When the RH was increased to 98%, increases in glutathione levels were strongly attenuated. Increased lipoxygenase enzyme activity was detected 8 h postchallenge in either incompatible interaction. These results indicate that the activation of the Cf-Avr-mediated defense response results in severe oxidative stress.